



# Wetland Ecosystems

Habitats, communities and the diversity of life

# TEACHER'S GUIDE

Elementary Level Science



# Table of Contents

| info<br>Zone |
|--------------|
|--------------|

#### FOR MORE INFORMATION CONTACT:

Ducks Unlimited Canada P.O. Box 1160 Stonewall, MB ROC 2Z0 Tel: (204) 467-3000 Fax: (204) 467-9028 Toll Free: 1-800-665-DUCK Website: www.ducks.ca Email: webfoot@ducks.ca

All rights reserved. This material may be copied and used by educators for educational purposes in its unaltered format but may not be used for financial gain. Persons wishing to use this material for purposes other than educational must receive the express written permission of Ducks Unlimited Canada.

| Ideas for using the project guideii                     |  |
|---------------------------------------------------------|--|
| Guidelines for descriptive writingiii                   |  |
|                                                         |  |
| Lesson One                                              |  |
| Water, water everywhere 1                               |  |
| Lesson Two                                              |  |
| Together we stand, divided we fall                      |  |
| Lesson Three                                            |  |
| Wetland zones and the cycle of life                     |  |
| Lesson Four                                             |  |
| Adaptations7                                            |  |
| Lesson Five                                             |  |
| Produce, consume or decompose                           |  |
| Lesson Six                                              |  |
| Chains and webswhere does the food go? 11               |  |
| Lesson Seven                                            |  |
| Water, water everywhere but where, oh where, is air? 12 |  |
| Lesson Eight                                            |  |
| Wetland stress                                          |  |
| Lesson Nine                                             |  |
| Wetland protection and restoration                      |  |
|                                                         |  |

#### Appendix

| Shallow water organisms          |    |
|----------------------------------|----|
| Deep water organisms             |    |
| Bottom organisms                 |    |
| Constructing an underwater scope |    |
| Paper hexagons                   |    |
| Cycle of Life cards              |    |
| It's Just Like cards             | 33 |
| It's Just Like tokens            |    |

Ducks Unlimited Canada

# Ideas

for using the project guide

In this unit, wetlands found close to most communities across North America are used to demonstrate a wide variety of ecological concepts. Through the activities and lessons provided, students can develop the foundation for literacy in the life sciences. You can help students enhance their understanding of the environmental, technological and social aspects of science and encourage them to work together to solve problems. At Ducks Unlimited, it is our hope that students in the elementary level (grades four through six) will develop an appreciation for science and a sense of wonder about wetlands.

The list of suggested individual and group projects, on page iii of the student journal, is a selection of activities which students (alone or in teams) can complete to demonstrate their understanding of the concepts presented during the study of **habitats, communities and the diversity of life.** 

These activities may be used in a number of ways:

- to encourage students to work in a group
- to outline concepts for the students
- · as items to summarize the lesson unit for evaluation

#### **Suggested Approach**

When determining how the list of projects will be used, consider:

- What skills and knowledge do you wish to assess?
- What content do you expect students to include in their pieces?
- What skills for completing the projects do your students have?
- What instructions do they need in order to successfully communicate their understanding of content?

Students may be asked to select several projects from the list. In order to provide diverse feedback from students, they may be asked to complete at least one written piece, one 3D piece and one graphic piece, or another configuration which may include fiction, nonfiction, poetry or graphics.

On pages iv and v of the student journal, the students are given an outline of how their projects and presentations will be evaluated. This will not only help them understand what you are looking for but allow them to assess their own projects and provide guidance to fellow students.



# Guidelines

for descriptive writing

This section offers guidelines for your students in developing some of the projects suggested on page iii of their journal.

There are five main elements in the development of narrative writing:

- Plot
- Setting
- Character
- Theme
- Viewpoint

#### PLOT

#### Beginning/Middle/End

When developing a narrative, authors should ensure that the three parts of the story will be easily identified (introduction, development or complication, resolution). In the beginning, the characters are introduced, setting described and problem presented. These **characters**, setting and events are used to develop the plot and sustain the **theme** (e.g. good vs evil). Conflict is introduced and road-blocks for the characters are developed which they attempt to solve. In the end the reader learns whether or not the characters are successful in their struggles.

#### Conflict

Conflict is the tension of opposition between forces and is usually the element that keeps readers interested in the story.

Conflict usually takes one of four forms (Lukens, 1991):

- Conflict between character and nature
- · Conflict between character and society
- Conflict between characters
- Conflict within a character

#### **Plot Development**

The plot is established in four steps:

- 1. A problem introducing a conflict is presented at the beginning of the story.
- 2. Characters face roadblocks as they attempt to solve the problem in the middle of the story.
- 3. The high point of the action occurs when the problem is about to be solved. This high point separates the middle and end of the story.
- 4. With the roadblocks overcome and the problem solved, the characters move on to other activities.



# Guidelines

for descriptive writing

#### SETTING

Dependent on the type of story, setting can be relatively unimportant or the most significant element within the story. Following are common settings:

#### Location

#### Weather/Season

**Time** (includes both time of day and passage of time within a story) **Time Period** (when the story happens such as past, present or future)

#### VIEWPOINT

#### First Person

The first person is used when authors choose to tell the story through the eyes of one character using the first person pronoun I. This style allows the reader to live the story as the narrator sees it, but the narrator is an eyewitness rather than a participant.

#### Omniscient

In this form, the author is all-seeing and all-knowing. The author tells the readers about the thought processes of each character without explaining how the author has found out this information.

#### Limited Omni

Authors overhear the thought without being all-knowing and all-seeing. The story is told in the third person and concentrates on thoughts, feelings and past experiences of the main character or other important character.

#### Objective

This viewpoint is written as if the author is using a camera and a tape recorder and only reports what is visible and audible in the immediate scene. Readers are eyewitnesses but are not given any insights into the motivation of the characters other than the reader's own personal experiences.

### Lesson one

# Water, water everywhere



Though each lesson has been aligned to a primary curriculum statement, lessons have been designed to include support for parts of this program. The designated lesson does not refer to a single class period for presentation and completion, though some lessons will be of this duration. The designation refers to all activities organized around the central curricular statement.

#### **Grouping Students**

The decision to group students for the purpose of completing these activities belongs to the teacher. Lessons have been designed to apply to any grouping strategy. Each lesson includes recommended strategies but does not prescribe their use.

#### **Questions for Discussion**

Questions for discussion are included in each lesson. They have been placed where they are most likely to focus student attention on the significant concepts.

#### **Curriculum Alignment**

Recognize and describe one or more examples of a wetland ecosystem (marsh, bog, swamp or fen) found in the local area.

#### **New Vocabulary**

Wetland, ecosystem, organism, biotic, abiotic

#### **Materials**

Charts on pages one and two of the student journal

#### **Activity Description**

- 1. Ask students to generate a list of the places they would likely find water within 100 km of the school. Record all ideas on the blackboard. Note: Students may list things like the tap, the bathtub, a pitcher in the fridge, a river, as well as a marsh, lake, etc.
- 2. Once the list has been generated, get students to select and record in their charts on page one of the student journal (see diagram 1.1 below) the names or locations of three **wetland ecosystems** where they think they would most likely find living things on, in and around the water. Students should also include the kinds of organisms that live in these locations (names or descriptions are acceptable). Refer the students to pages 3, 4, 7, 8 and 9 of their journal for examples of wetland organisms.
- 3. Encourage students to share their charts with others. Provide appropriate time to discuss the locations and the living things they have listed.
- 4. Ask students to share what they think the term *wetland ecosystem* means. Draw attention to the two words: **wetland** and **ecosystem** (see page two). Have them consider and share what each of the words means individually. For comparison, contrast with other ecosystems like forest, grassland, desert, marine, etc. Lead a session that allows for each student's input. Lesson two in the student journal provides additional information.

| Name or location<br>of a wetland ecosystem | Organisms that live<br>in the water | Organisms that live<br>on the water | Organisms that live<br>beside the water |
|--------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|
| I POND                                     | 1)<br>FRESHWATER SHRIMP             | MALLARD DUCKS                       | GARTER SNAKES                           |
|                                            | 2)<br>COONTAIL                      | DUCKWEED                            | WILLOW                                  |
|                                            | 3)                                  |                                     |                                         |
|                                            | 4)                                  |                                     |                                         |
|                                            | 5)                                  |                                     |                                         |

DIAGRAM 1.1

### Lesson one continued

#### Wetland Ecosystems

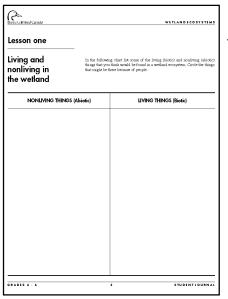
Wetland is a term that refers to the partial flooding of an area of land for short or long durations in which a close relationship between the water and land organisms exists. A defining feature of natural wetlands is the type of plants living on aquatic soils and the transition zone between water and land, where there is a large diversity of living things. *Ecosystem* refers to the relationships which exist among the living (biotic) and nonliving (abiotic) components of an environment.

- WETLAND ECOSYSTEMS
- 5. When the class has completed the discussion, place the definition for wetland ecosystems on a piece of chart paper. Draw attention to the term *natural* which distinguishes the impact of humans on the environment from that of other organisms. Today there are few natural wetland ecosystems. Many have been impacted negatively by humans although some have been protected and restored.
- 6. Groups of students can choose one of the wetland ecosystems and generate a list of all the living (biotic) and nonliving (abiotic) factors they believe are present in that ecosystem on page two of the student journal.

#### **Culminating Activities**

Refer to the list of suggested projects on page iii of the student journal for ideas. You may now choose to assign one of those or several of the following:

- 1. Individual students may design a wetland ecosystem cover page for the unit.
- 2. Groups of students may design and paint a large mural of a wetland ecosystem of their choice.
- 3. Each student may write and research a report on an organism living in a wetland ecosystem.
- 4. Students may research, define and produce a poster for each of the following terms – marsh, swamp, bog and fen.


**BIOTIC:** All living things present in an ecosystem

#### **ABIOTIC:**

All those nonliving factors present in an ecosystem (light, water, soil, heat, chemicals, etc.).

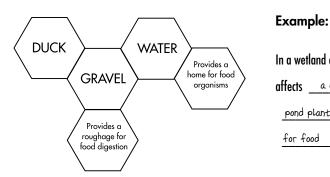
### Lesson two

### Together we stand, divided we fall



**STUDENT JOURNAL PAGE 2** 

#### **Curriculum Alignment**


Understand that a wetland ecosystem involves interactions between living and nonliving things, both in and around the water.

#### **Materials**

Paper hexagons (see template on page 24 of this guide), student journal.

#### **Activity Description**

- 1. Get students to share their generated lists of living and nonliving things present in a wetland ecosystem from the previous lesson.
- 2. The students should read pages three and four in their journals and identify the living and nonliving things described in the piece. Ask students to look for and identify any interactions between the living things and other living things, living things and nonliving things, and nonliving things and nonliving things in the ecosystem.
- 3. Provide students with cardboard hexagonal discs (see template on page 24) on which to write their ideas (red discs for animals, green discs for plants, blue discs for nonliving things and white discs for the explanation of the relationship between things) and a large space on which to attach the hexagonal discs. They should communicate their knowledge of these interactions using the following guidelines:
  - Students should be encouraged to generate several relationships.
  - Students should be encouraged to list relationships they know exist in wetlands.



### In a wetland ecosystem <u>water</u> affects <u>a duck</u> by <u>providing</u> <u>pond plants and small organisms</u> for food



### Lesson two continued

| Dade Wrinted Carada      |                                                                                             | WETLAND ECOST STEMS                                                                                                                           |
|--------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Lesson two               | _                                                                                           |                                                                                                                                               |
| Wetland<br>relationships | discs showing relationships between                                                         | e where you match hexagonal (six-sided)<br>things in a wetland. Use the space below<br>d between two living things or between an<br>g) thing. |
|                          | <b>Exemple</b><br>In a wetland eccaystem <u>water</u> affects<br><u>onemisms for food</u> . | a <u>duck</u> by providing <u>pand plants and small</u>                                                                                       |
|                          | <ol> <li>In a w stland ecosystem<br/>by providing</li> </ol>                                | affects                                                                                                                                       |
|                          |                                                                                             | affects                                                                                                                                       |
|                          |                                                                                             | affects                                                                                                                                       |
|                          |                                                                                             | affects                                                                                                                                       |
|                          | <ol> <li>In a w etland ecosystem<br/>by providing</li> </ol>                                | affects                                                                                                                                       |
|                          |                                                                                             |                                                                                                                                               |
|                          |                                                                                             |                                                                                                                                               |
|                          |                                                                                             |                                                                                                                                               |
|                          |                                                                                             |                                                                                                                                               |
|                          |                                                                                             |                                                                                                                                               |
| GRADES 4 - 6             | \$                                                                                          | STUDENTJOURNAL                                                                                                                                |

#### STUDENT JOURNAL PAGE 5

| Lude Unimited Canada             | WEILAND ECOSTSTEMS                                                                                                                                                                                                                                                                               |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lesson two                       |                                                                                                                                                                                                                                                                                                  |
| As strong as the<br>weakest link | Muny thage can Juppen to ecosystem that affect the cognition bring them.<br>Choice on expansion from your cloud of bring things in a wethout ecosystem<br>(upper two).<br>Organization the randomic dampions from the wethout ecosystem. Explains what<br>may have round the cognition dampions. |
|                                  |                                                                                                                                                                                                                                                                                                  |
|                                  | Popices how the disappresence of Histogramm will affect other organization for food backs, both before it and with it.                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                                                                                                                                                                                                                  |

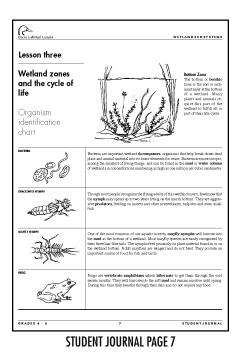
STUDENT JOURNAL PAGE 6

- 4. Students must write out the wetland relationships on page five of their journals.
- 5. When the relationships and explanations have been completed, have students post them on a large display board (1.3 m x 2.6 m). If two or more students select the same living thing, the hexagonal shape for the organism should be placed over the existing one and the other information appropriately spaced.
- 6. Have students do the *As strong as the weakest link* exercise on page six of their journal. Explain the concept of habitat acting as a home for organisms that provides them with the necessities of life (food, water and cover).

#### **Questions for Discussion**

- Is there a living thing associated with the wetland ecosystem that is entirely independent of all other things, living and nonliving?
- How do living things serve to promote the survival and growth of other living things in a wetland ecosystem?
- How do the nonliving things in a wetland ecosystem serve to promote the survival and growth of living organisms?
- How do nonliving things affect other nonliving things in a wetland ecosystem?
- How do the living things affect the nonliving things in a wetland ecosystem?
- Are all of the factors natural or have some been introduced by people? What is the effect of this?
- Ask students to define the word *habitat*.

#### WETLAND ECOSYSTEMS


### Lesson three

### Wetland zones and the cycle of life

#### **CYCLE OF LIFE CARD GAME**

Refer to the second lesson note at right and materials on pages 25 to 32. Two to four players pick up and match cards (an animal card with its corresponding life cycle description card) in sets of two until all their cards are placed on the table.

- 1. Deal six cards to each player. Turn the top card over.
- The player to the right of the dealer may pick up the turned card or may select from the top of the deck.
- 3. Players must discard one card during each turn.
- Players, in turn, may choose to pick up the overturned card, the pile of discards or the card on the top of the discard pile.
- 5. As players collect sets of matching cards, they lay them on the table in front of them.
- 6. The game continues until one player has put all of their cards on the table in sets.
- Scoring: Each set placed down on the table counts as two points. Each card remaining in the players' hands are counted as negative points (-1 per card remaining in the hand).



#### **Curriculum Alignment**

Organize a field trip to a wetland in your area. Have the students use their field trip sheet on page ii of the student journal. Identify some plants and animals found in different zones at the wetland site and describe the life cycle of these plants and animals. Refer to lesson three in the student journal, pages 7 to 9. Alternatively, use resource reference material to conduct this lesson in class.

#### Lesson Note

- 1. Though this lesson has been designed to combine the classroom with a field trip, it is possible to cover the concepts in an interesting manner by following the recommendations for the classroom only.
- 2. Reproduce, cut out and laminate the life cycle cards located in the appendix (pages 25 to 32 of the educator's guide). Play the game as described at left.

#### Materials

For field trip only: white foam egg cartons, one clipboard and pencil per student, organism charts (pages 20 to 22), one coat hanger per pair of students (required at least one day before field trip), used pantyhose for netting material, pliers (for teacher), hand lens, stereoscopic microscope (optional), white plastic containers with lids (recycled margarine or sour cream tubs), underwater scope (optional – see instructions on page 23). Small aquarium nets available in pet shops are an inexpensive alternative to the coat hanger net or you may simply bind a small plastic flour sieve to a hockey stick. You will also need to refer to pages 7 to 12 of the student journal.

#### Activity Description

#### Classroom

- 1. Review the organisms described in lessons one, two and three. With students working in pairs, have each group identify one plant and one animal that live *in* the wetland, one plant and one animal that live *on* the wetland and one plant and one animal that live *around* the wetland. Once species have been identified, students conduct research and discuss the life cycle of each of the organisms selected.
- 2. Each pair will explain how the wetland ecosystem is essential to the survival of each of their selected organisms.
- 3. Distribute decks of the *Cycle of Life* game cards to students. The game is played with two to four students per set of 52 cards. The purpose of the game is to assemble sets of *Cycle of Life* cards for several organisms.

### Lesson three continued

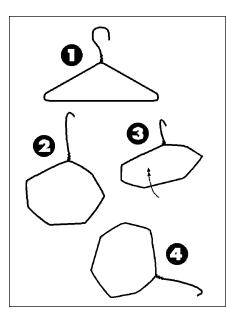



DIAGRAM 3.1

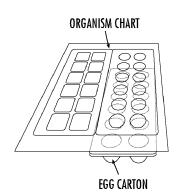
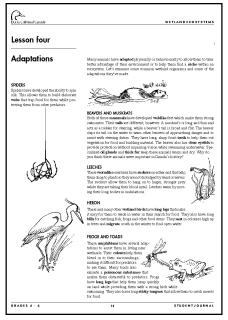



DIAGRAM 3.2

#### **Field Site**

- Preparations
- Select a safe wetland site and, if necessary, request landowner permission for your visit.
- Send home field trip permission forms and request that students come prepared with appropriate clothing and waterproof footwear. Stress the need for safe and respective behaviour while on the field trip.
- Prepare wire hanger dip nets as shown in diagram 3.1. Be careful to bend wire safely and tape over any sharp wire points. See page five for other inexpensive alternatives.
- Prepare the wetland identification kits as follows: Cut laminated organism charts (pages 20 to 22) to fit the top of white foam egg cartons as shown in diagram 3.2.
- Prepare the underwater scope as indicated on page 23 (optional).
- Obtain four to six magnifying glasses and hand lenses, and provide each group with white plastic containers (recycled margarine or sour cream tubs).
- Establish field trip work groups with four students each.
- Discuss the expectations for working in the field with students.
- 1. Place students in groups of four. Have students look at the wetland ecosystems organisms identification chart on pages 7 to 12 of their journal. Give each group two nets, two plastic containers and a set of three wetland identification kits (egg cartons with organism charts).
- **2.** *Task*

Each group is to collect, correctly identify and place a sample of organisms collected from the wetland into the egg carton space matching the organism on the organism chart. Discuss the adaptations of each organism for feeding, breathing and locomotion (see lesson four). Students are to attempt to identify and collect various stages in the life cycles of several organisms. Have the students record information on *Field Trip Notes* on page ii of their journal.


You may wish to bring a representative sample of organisms back to a properly established aquarium in your class for use in other lessons. Equip your aquarium with soil, plants and water to provide important habitat features. Safely release the remaining organisms back into the wetland.

**3.** Have individual students in each group choose one organism and trace its life cycle with words and diagrams. Students should be able to explain the adaptive value of each stage in their organism's life cycle. Refer the students to lesson four, pages 13 and 14.



### Lesson four

### **Adaptations**



**STUDENT JOURNAL PAGE 13** 

| DIRECT | INDIRECT |
|--------|----------|
| water  | trees    |
|        |          |

#### DIAGRAM 4.1

#### **Curriculum Alignment**

Identify and describe adaptations that make certain plants and animals suited for life in a wetland. Recognize that some aquatic animals use oxygen from air and others from water. Identify examples of each. Recognize the variety of the adaptations for feeding and locomotion.

#### Lesson Note

As in lesson three, this lesson has been designed to combine classroom and field activities. It is possible to cover the concepts in an interesting manner by following the recommendations for the classroom only.

#### **Activity Description**

Classroom

- 1. Introduce and discuss the term *life* with students. Ask them to help develop a definition of what a living thing must have to be considered alive (i.e. require nourishment, take in or produce food, respond to environmental stimuli, grow and reproduce). Contrast biotic and abiotic features discussed in lesson one.
- 2. Introduce/review (depending on whether students have been taken to a wetland site or not) the concepts related to adaptation to the environment. Ask students what things directly or indirectly affect the lives of organisms that exist in a wetland ecosystem. This activity might be done by using the following procedure:
  - Make a T-chart on the blackboard, chart paper or overhead (see diagram 4.1).
  - Put the headings *Direct* and *Indirect* on the top of the chart.
  - Begin by saying "water has a direct influence" and writing the word *water* on the *direct* side. Then write *trees* in the *indirect* column.
  - Continue to provide students with things that have a direct influence and things that have an indirect or weaker influence until students begin to offer their own ideas. Give each student a chance to suggest at least one example of a direct or an indirect wetland influence.
  - Activity continues until all things that have a direct influence are included (a time limit may be used).
- 3. Have students turn to lesson four in their journal (pages 13 and 14). Have them select an environmental factor to research and discuss – such as water – that affects the lives of wetland organisms in different ways. Discussion should investigate how a variety of organisms have used different means to adapt to this factor (e.g. webbed feet in ducks, oarlike legs in water boatmen, house structure for beaver, etc.)
- 4. Choose a characteristic of life (e.g. feeding) and compare how a variety of organisms meet their needs in a wetland ecosystem (e.g. dragonfly larva, mallard duck, great blue heron, cattail, duckweed). Use the library or Internet to provide supplementary information.



### Lesson four continued

| Constant Constant                                     |                                                                                                                                                                                        | WETLAND ECOSYSTEMS                                                                                                                                                  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lesson four<br>Adaptations<br>and human<br>inventions |                                                                                                                                                                                        | Book feet, they are local to                                                                                                                                        |
|                                                       | con and a pri fighter larve remarkably multi-<br>wing shapes.                                                                                                                          | A TANKS<br>I taskis allowa persons to breather<br>where by strongs coggen, just<br>diving bodies started at the<br>diving the division of additional<br>og contrat. |
|                                                       | CAMOURAGE CLOTHING<br>Solders war a manuflage obtaing to avoid be-<br>ing gotted by the enserty, much like the sphothy<br>colours of a frog hide it in vegetation from preda-<br>tors. |                                                                                                                                                                     |
| GRADES 4 - 6                                          | 15                                                                                                                                                                                     | STUDENT JOURNAL                                                                                                                                                     |

**STUDENT JOURNAL PAGE 15** 

*info* ONE

Students play the *It's Just Like* game by comparing an animal or plant adaptation to something used by humans (e.g. a paddle for a boat compared to a beaver's tail or a duck's webbed feet; a raincoat compared to a duck's feathers).

5. Have students read *Adaptations and Human Inventions* on page 15 in their journal. Discuss whether they know of any other inventions that have been copied from nature.

#### **Supplementary Activities**

- a. Have students form groups of four. Have them play the *It's Just Like* game as described on page 16 of their journal. See appendix on pages 33 to 38.
- b. Have students, individually or as a group, choose an organism and pantomime how it gets oxygen. Students may create a whole wetland scene by performing their oxygen gathering together for different species.

### Lesson five

### Produce, consume or decompose

#### **Curriculum Alignment**

Understand and appreciate that all animals and plants, not just the large ones, have an important role in a wetland community. Identify the roles of different organisms in a wetland.

| Producers   | green plants that make their own food using sunlight, |
|-------------|-------------------------------------------------------|
|             | air and water                                         |
| Consumers   | animals that eat living plants and/or animals         |
| Decomposers | organisms that reuse and recycle materials that were  |
|             | formerly living (decomposers include moulds, fungi,   |
|             | insects and worms)                                    |

Identify examples of each of the above within a wetland ecosystem.

#### Lesson Note

As in lessons three and four, this lesson can be discussed while on the field trip or using the aquarium specimens collected on the field trip. Coverage of the concepts in an interesting manner can be achieved by following the recommendations for the classroom only.

#### **Activity Description**

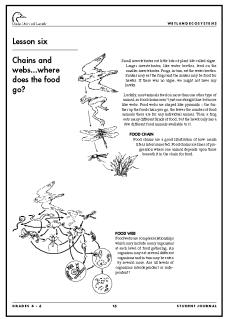
#### Classroom

- 1. Have students look at the organisms that appear on pages 7 to 9 of the student journal. Ask them to observe these organisms (pictures or living specimens) to determine likely food sources. Direct attention to the following terms: producer (green plants), primary consumer (animals that eat plants only), secondary consumer (animals that eat other animals though they may also eat plants) and decomposers (living things that help to break down dead things). Discuss the terms *herbivores, carnivores, omnivores, predators* and *prey*.
- 2. Students should list the names of organisms under the correct term for food procurement.
- 3. Pair students and get each group to make a selection of one or more organisms on which to conduct research. Students should be aware their research should help them answer the following questions:
  - What is the primary environment for the organisms you have chosen?
  - Can your organism exist in any other environment?
  - Describe the characteristics of the environment (abiotic features such as temperature, general surroundings, etc.) in which your organism lives.
  - In what ways do your organism's young differ from the adults?

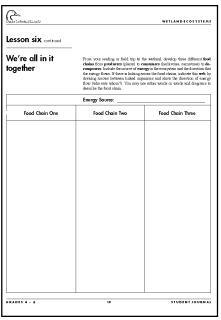


### Lesson five continued

- What are the chief sources of food for your organism?
- What is the greatest source of danger for your organism?
- What special adaptations does your organism exhibit for survival?
- How would the disappearance of your organism affect other organisms in the wetland ecosystem?
- 4. Have students present their research to the class. As each organism is discussed, have the class fill out the chart on page 17 of the student journal.


| esson five                          |                                                                                                            |                                                                                                                                                                                                                                         | WETLANDECOSYSTEMS                                                                                                                                                                                                                                                                                     |
|-------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Produce,<br>consume or<br>lecompose | Determine the<br>Decide which<br>the name of a w<br>source of its er<br>food above it.<br>finished filling | difference between primary,<br>of these groups are herbivores<br>rethend organism in one of the s<br>argy (food) in the box below i<br>Note that decomposers opens<br>all of the boxes, draw lines wit<br>r. You may join boxes to more | I decomposers with your teacher:<br>secondary and final commers:<br>and values are comparisons: Filsee the<br>teach teacher with the set of the<br>teach teacher with the set of the<br>teacher with the set of the teacher<br>hannows showing the direction of<br>fam one other toos. Set teacon six |
| FINAL CO                            | NSUMER FINAL O                                                                                             | ON-SUMER DEC                                                                                                                                                                                                                            | KOMPOSER                                                                                                                                                                                                                                                                                              |
| SECONDARY<br>CONSUMER               | SECONDARY<br>CONSUME                                                                                       | SECONDARY<br>CONSUME                                                                                                                                                                                                                    | DECOMPOSER                                                                                                                                                                                                                                                                                            |
| PRIMARY<br>CONSUMER                 | PRIMARY<br>CONSUMER                                                                                        | PSIMARY<br>CONSUME                                                                                                                                                                                                                      | DECOMPOSER                                                                                                                                                                                                                                                                                            |
| PRODUCER                            | PRODUCER                                                                                                   | PRODUCER                                                                                                                                                                                                                                | DECOMPOSER                                                                                                                                                                                                                                                                                            |
| PRODUCER                            | PRODUCER                                                                                                   | PRODUCER                                                                                                                                                                                                                                | DECOMPOSER                                                                                                                                                                                                                                                                                            |

**STUDENT JOURNAL PAGE 17** 




### Lesson six

### Chains and Webs... where does the food go?







**STUDENT JOURNAL PAGE 19** 

#### Curriculum Alignment

Draw a diagram of food chains and food webs and interpret the diagrams.

#### **Materials**

Wetland ecosystems charts (student journal, page 17), pond web board, chart paper, thick coloured pens.

#### **Activity Description**

- 1. Have students read about food chains and food webs on page 18 of their journal.
- 2. Refer to page 19 of the student journal and have the students complete this exercise. Briefly introduce the terms *energy*, *producers and consumers* and *food webs*.
- 3. Review placement of organisms in the food chain chart that students finished on pages 17 and 19.
- 4. Assign students to small groups to share ideas about these charts.
- 5. Give each group a large piece of chart paper and have them build food webs from the food chains they noted after conducting research on a wetland organism.
- 6. Explain that in nature most animals have several food sources. If they did not, the decrease in populations of their only food source could lead to their decline and eventual extinction. Having adaptations that allow a wider variety of food sources provides an important safety factor for many species. Are species that are omnivores more successful? Consider species like black bears, raccoons and humans. Talk about the interdependence of organisms in a food web.

### Lesson seven

Water, water everywhere...but where, oh where is air?

*info* ONE

Oxygen is of great importance to most living things, both in its use and its production. Terrestrial organisms (those living on land) possess lungs, a spongelike bag that is heavily filled with capillaries for gas exchange. The lung works much like a sponge, soaking up large quantities of air, absorbing oxygen and expelling carbon dioxide. With the atmosphere composed of 21 per cent oxygen, it is easily procured. Aquatic organisms, on the other hand, must employ other means to procure necessary oxygen. Though it is not immediately apparent, oxygen is present in water as dissolved particles (oxygen and other gases do dissolve in liquids such as water). Because of the largely reduced amount of oxygen available, different methods are required and generally involve organs located outside or close to the outside of the organism's bodies. These organs function by enabling a great deal of water flow over their blood-filled surfaces so that oxygen may diffuse into the blood cells and carbon dioxide may diffuse back into the water. The blood then carries the oxygen to other body tissues via the circulatory system.

#### Curriculum Alignment

Recognize that some aquatic animals use oxygen from air, others from water. Identify examples and adaptations of each.

#### **Materials**

Sponges, paper towels, plastic wrap, other materials to test for absorbency, plastic tubs, water and a balance (triple beam or equal arm).

#### **Activity Description**

1. Introduce lesson by asking students:

- What would happen if all the oxygen on earth suddenly disappeared?
- Do all organisms require oxygen to live? What is oxygen used for? Give examples of organisms that do not need oxygen to live (e.g. anaerobic bacteria).
- Why do most living things need oxygen?
- Ask students to think about plants then briefly explain how plants absorb carbon dioxide and produce oxygen during the photosynthetic process. Plants are important in supplying the oxygen needed by other living things.
- 2. Display the following question on a blackboard, chart paper or overhead:
  - What behaviours and structures do animals use to increase the amount of oxygen they absorb?

Students may list ideas such as breathing harder or faster, using lungs filled with tiny sacs (alveoli), constant motion to increase the amount of oxygen passing over the gills (sharks and rays) or constantly pumping water by the gills using gill covers (the operculum in most fish).

### Lesson seven continued



#### Oxygen

Oxygen is required by living things to drive respiration, the action in which fuel from the foods the organism ingests is changed from complex chains into simple molecules used to produce energy within each cell of the organism's body. Though the process is a complex one, it basically involves changing a long chain of molecules with the assistance of oxygen into carbon dioxide and water. This process releases the energy that is required by the cells to live. Though many organisms have other means to access fuel (anaerobic), they are only effective for short periods of time and generally produce toxins which are harmful to the organism if they become too concentrated (e.g. lactic acid). The joining of oxygen molecules to food molecules prevents the body from producing these toxins and also provides it with the energy for growth, tissue building and tissue repair. The ability of an organism to use available oxygen plays a significant role in that organism's survival. Long distance runners require the ability to use available oxygen extremely efficiently for extended periods of time, while sprinters place such high energy demand on their tissue that the relatively slow process of aerobic respiration cannot meet the demand. This demand is met, instead, by the anaerobic alactic system which kicks in for only about 10 seconds at a time, allowing explosive responses from muscle tissues. Between 10 seconds and eight minutes of continued strenuous exercise causes the anaerobic lactic acid system to come into play, but this system must be replaced or irreparable tissue damage can be caused by lactic acid build up.

3. Explain to students that they are going to conduct tests to identify a material and a procedure to absorb water in ways that demonstrate similar methods of taking in oxygen. Explain that they are using water rather than oxygen because it is easier to observe changes in quantities of water through weighing.

#### Challenge students to:

• Discover a material and a method that would absorb the greatest possible amount of water.

#### **Guidelines:**

- The material used must allow water to escape from it in any position in which it is held.
- The weight of the material will be taken before and after it is placed in the water.
- Students will be limited to 15 seconds to absorb water with the material and procedure(s) of choice.
- The material must be held freely in the air until the water escaping from it is reduced to slow dripping.
- A written procedure must be provided before students are permitted to submit their idea for final testing. See the sample (diagram 7.1) below.
- The material and procedure which retains the greatest amount of water compared to the material's weight will be considered to be the most absorbent.

#### SAMPLE EXPERIMENT

#### **Material**

Five sheets of paper towel.

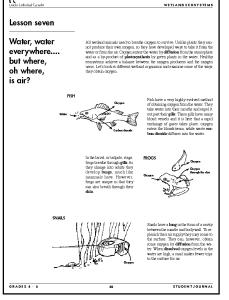
#### Procedure

- Stack the towels up to form a pad of towels five thick. Weigh the towels.
- Submerge the paper towel pad in water and drag it slowly around under the water.
- Gently squeeze the pad of towels and open it once more, dragging it through the water.
- Carefully lift the towels from the water by holding onto two corners of the pad.
- Finally, allow the pad to drain until it drips slowly and weigh again.

The experiment can be repeated using a variety of other materials like sponges, plastic wrap, glass, wood, etc.

#### DIAGRAM 7.1

### Lesson seven continued




#### Plants

 $(\sim$ 

Plants do not require oxygen in the same manner as animals. They are food chain builders and can access food sources as they make them before the chains become so long they are inaccessible. Rather than releasing carbon dioxide and water, they pull apart their molecules using the hydrogen, carbon and some of the oxygen, and release the excess oxygen through the leaves. Instead of taking in oxygen and releasing carbon dioxide, plants reverse the process.





**STUDENT JOURNAL PAGE 20** 

- 4. Ask students to turn to pages 20 to 21 of their journals and view the ways wetland animals obtain and absorb oxygen. Have them work with other students to discover which species use a similar technique or material to the one that they used during their experiment.
- 5. Have students develop a chart which matches the method of oxygen absorption to the name of different animals (e.g. gills, lungs, skin surface, snorkel, air bubble).

| Name of organism | Name of oxygen absorbtion |
|------------------|---------------------------|
| humans           | lungs, alveoli, breathing |

#### WETLAND ECOSYSTEMS I

### Lesson eight

### Wetland stress

info **7**0NE

#### Temperature

Temperature affects the amount of gas (in this case oxvaen) that can be dissolved in a liquid. Unlike solids dissolved in liquids, where raising the temperature increases the amount of material that can be absorbed. gases are the reverse. The lower the temperature, the greater the quantity of gas that can be dissolved and held by the liquid. The reason for the difference relates to the action of the molecules. The faster the aas and liquid molecules move (as they do when they are warmer) the greater the likelihood of gas particles meeting, joining and escaping the liquid. When solids are placed into liquids, the movement of the particles determines the amount and the rate at which the solids dissolve (the greater the temperature, the faster and more energetic the liquid particles move causing them to pull apart the solids more quickly).

| Durles Lefinited Canada | WETLANDECOSYSTEMS                                                                                                                                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lesson eight            |                                                                                                                                                                                                                                |
| Continued               | Tack 2 To examine baselon deads if you think the water is drive, numerical polluted or way polluted. Paramether fun invest flow drawateness and movine data: the number of appaarant in the river at three different locations |
|                         | Theorer the information that you have proposed into the following ebart. In ting<br>causes ar either hamful or beneficial. Remember, some species might actually<br>thrive in polluted water.                                  |
| HARMFUL                 | BENEFICIAL                                                                                                                                                                                                                     |
|                         |                                                                                                                                                                                                                                |
|                         |                                                                                                                                                                                                                                |

STUDENT JOURNAL PAGE 23

#### **Curriculum Alignment**

Identify human actions that can threaten the abundance or survival of living things in wetland ecosystems such as adding pollutants or changing the flow of water.

#### Materials

Student journal, light cooking oil, sponges or other absorbent materials from the previous lesson, tub, water.

#### Activity Description

- 1. Have the students read the problem and task one on page 22.
- 2. Post the following question for discussion by groups of students:
  - What human actions affect wetland organisms?

Have the groups brainstorm and record their ideas on chart paper. Allow time (5 to 15 minutes) for them to generate ideas. Allow time for sharing ideas with the class.

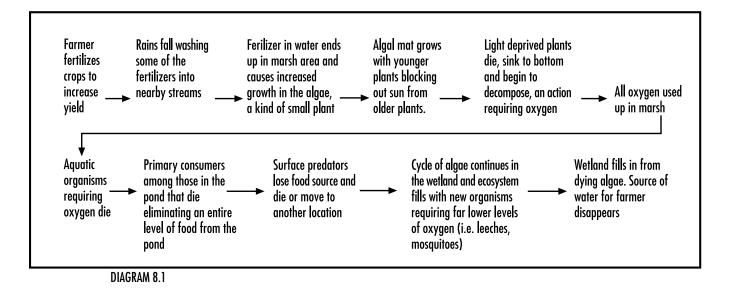
- 3. Depending on the general responses by students, ask them if all human interventions are necessarily bad or are necessarily good. Have the groups review their ideas and attach the large, black letter H to the effects that are harmful and a large, green B to those that are beneficial. Students should be prepared to explain their labels. Information should be transferred into the T-chart on page 23 of their journals.
- 4. After time is provided for students to have completed this activity, introduce the idea of absorption and the influence of pollutants. Ask students how oil would affect the ability of a material to absorb water. After students have given their opinions, demonstrate the following:

#### Pollution Demonstration

- Weigh the absorbent material (a sponge works well for this).
- Thoroughly soak the sponge in the oil then wring the oil from the sponge. Weigh the sponge once more noting the difference in weight.
- Have a student who used a sponge as absorbent material provide the procedure for absorbing water and follow the procedure as given by the student.
- Weigh the sponge and water and determine the ratio between sponge weight oil dry and sponge weight water absorbed. Is the sponge able to absorb as much water when presoaked in oil as it was when oil was not introduced?

The addition of oil tends to coat the small air pockets which provide the space for water absorption. As a result the amount of water absorbed tends to be reduced. Oil may have the same impact on wetland animals and for a similar reason it damages the insulating capability of feathers and the underfur coat used by animals to stay warm.

### Lesson eight continued




Several factors influence the quantity of oxygen which is or can be dissolved in water. The two primary factors are water temperature and the quantity of organic matter (organic means the substance has come from a living or once living organism) in the water.

- 5. Draw an analogy of oil to other pollutants as they affect oxygen availability in water (see *Info Zone* on page 15). Ask students how the change in the amount of oxygen available to organisms in a wetland ecosystem might change the populations of living things which exist within it. Have students complete task two on page 23 of their journal.
- 6. Discuss student answers to the two tasks on pages 22 and 23 of the student journal. From the limited data that is presented, what is the most likely natural population existing in the river (likely those existing at the most upstream position at the bridge)?

What factors could have affected the populations so significantly? For example, organic materials from the sewage plant and dairy farm would place great oxygen demands on the river as decomposition requires oxygen. Runoff of oil and gas from roads may also impact life forms in the stream. As the river flows further from the source of pollution, the effects of the pollution are reduced. Where grassy parklands or forested shorelines exist, runoff of pollutants into the stream is reduced. The marsh at six km has had a positive effect on water quality and the life forms.

- 7. Ask students if they believe these changes are beneficial or harmful to the wetland organisms. The answer could be both depending upon the point of view. Generally, however, the introduction of pollutants decreases the number of beneficial organisms and increases the number of nonbeneficial or harmful organisms.
- 8. Point out to students that some of the factors that affect wetland ecosystems are those that are directly imposed on the wetland. Several other indirect factors, such as fertilizing farm crops, soil erosion and acid rain, affect wetlands. Demonstrate the development of a flow chart showing how indirect actions can affect wetland ecosystems (see diagram 8.1).



### Lesson eight continued

| Character Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WETLAND ECOSYSTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lesson eight<br>Impacts of<br>wetland<br>destruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | We had are ever changing. Many well dampsen; either naturally or throug<br>impact assumed by popple. In fact, it is estimated that more than $D$ per outs<br>the naturate on the channel particle have happened and analy of their set<br>grow, up to $D$ per out of the weather hand $D$ are some the set of the set<br>spicultural, admitted in oriented and expects. Others were changed to<br>spicultural, admitted in oriented and expects. Others were finded to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Do your research ar when we staked chart food charact<br>code (and when When we showed have more comments<br>depend upon a second with a second we with a character of the<br>and destructions (much the week we with a character<br>and destructions (much the week and caracter) and a full<br>destruction of the second week and the second week and<br>and the second week and the second week and the<br>and the second week and the second week and the<br>second week and the second week and the second week and<br>of second week and the second week and the second week<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and<br>of second week and the second week and the second week and the second week and<br>of second week and the second week and the second week and the second week and<br>of second week and the | of natural decogit, traving no banin to tray texts when wet search attempts the<br>decagard expansion are tools, loosever, and not and stypeschol. In fact, tank<br>decagard expansion are tools, loosever, and not and stypeschol. In fact, tank<br>and the step of the<br>decagard decagard and the step of the step of the step of the<br>tank step of the step of the step of the step of the step of the<br>step of the step of the step of the step of the step of the<br>tank step of the step of the step of the step of the step of the<br>step of the step of the<br>step of the step of the<br>step of the step of the<br>step of the step of the<br>step of the step of<br>the step of the step of the<br>step of the step of the<br>step of the step of the<br>step of the step of the<br>step of the step of the<br>step of the step of the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 08ADIS 4 · 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s subintjourna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

**STUDENT JOURNAL PAGE 24** 

info ZONE

Significant reductions in oxygen often mean the death of some organisms while promoting an increase in numbers of others (e.g. anaerobic species). Most shifts in the environment result in such changes as conditions for certain species worsen while conditions improve for others due to reduced competition for food or reduction in numbers of predators.

- 9. Brainstorm other indirect causes of wetland destruction (e.g. deforestation causing increased water temperature, flooding, erosion and siltation, leaking of water from landfills and factories, recreational area development such as parks and golf courses, changing runoff patterns and adding chemicals, roadway building and use, dam building, power lines, pipelines and telephone lines). Assign students to select one of the ideas and develop a flow chart showing how the actions cause disturbances in the wetlands.
- 10. Have students read *Impacts of Wetland Destruction* on page 24 and 25 of their journal. Discuss the concepts outlined on these pages (e.g. wetland loss, wetland values).

#### WETLAND ECOSYSTEMS I

### Lesson nine

# Wetland protection and restoration

| Ducks Unimited Canada                                                                                                           | WETLAND ECOSYSTE                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Lesson nine                                                                                                                     | _                                                                                                            |
| Wetland<br>protection and<br>restoration                                                                                        | <ol> <li>In the lock below generate as many ideas as you can think of to respond to<br/>question.</li> </ol> |
| What factors<br>can cause<br>permanent<br>changes to the<br>living (biotic)<br>and nonliving<br>(abiotic) parts<br>of wetlands? |                                                                                                              |
|                                                                                                                                 |                                                                                                              |
|                                                                                                                                 | 2. With a sclowed matter, cards our tang in the box you tank is a bends<br>change. Explain sity you tank so  |

**STUDENT JOURNAL PAGE 26** 

#### **Curriculum Alignment**

Identify human actions taken to preserve, enhance and restore wetland habitats and identify how the student' actions can play a role in conservation.

Recognize that changes in part of an environment affect the whole environment.

#### **Materials**

Student journal, Ducks Unlimited video *If you Build it...* (see table of contents for Ducks Unlimited contact information)

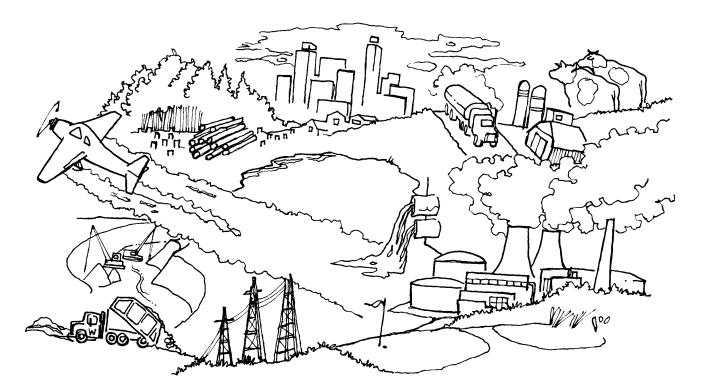
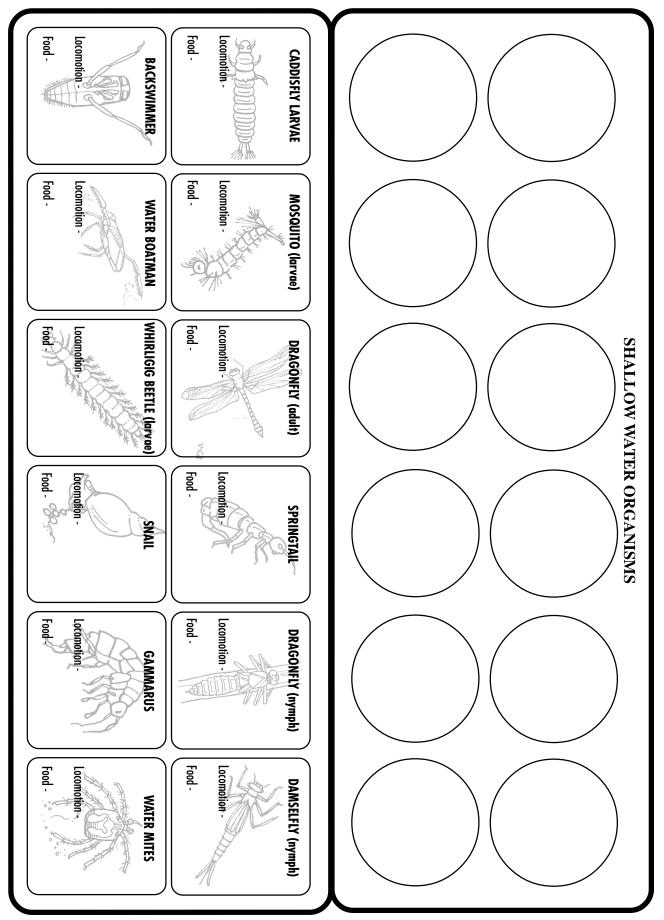
#### **Activity Description**

- 1. Discuss the human actions, identified in the previous class, that the students believe are beneficial to wetland ecosystems. When answering, get students to note which groups of organisms the actions are beneficial to (it is important that students consider the larger picture rather than look at how individuals gain).
- 2. Discuss what could have been done in the example to reverse or prevent the changes to the wetland ecosystem. Many students will likely suggest that they would not allow the farmer to use fertilizer. Remind them that wetlands are on the farmer's property. Without fertilizer, the crops would be weaker, without good crops many farmers may go bankrupt causing disruption of small communities, the loss of other jobs and the uprooting of many families. If food prices were higher, many people could not afford to eat properly. Explain that if buffer zones of grass or forest separate croplands from wetlands, the erosion of soils and fertilizer into the water is reduced. Erosion is also lessened if more cover is left on cropland through practices like zero tillage, rotational grazing and retaining natural grasslands. Also talk about how the destruction of wetlands results in changes for nesting waterfowl, dragonflies, muskrats, marsh birds and many other species of animals radiating outward from the pond (see diagram 9.1 on page 19).
- 3. Have the students complete the exercises on page 26 of their journal and discuss their ideas with the class. You can mention that species such as purple loosestrife, carp and zebra mussels have been introduced by people into North America's wetlands with significant impact. You might ask students to research these topics and report back to the class with their conclusions.
- 4. Discuss the terms *preserve, enhance,* and *restore* with students. Using the video *If You Build It...*, discuss ways which humans can improve or maintain wetland quality. Ask the following questions:
  - What factors have resulted in the destruction of wetlands?
  - What things are being done to improve overall quality of wetlands?

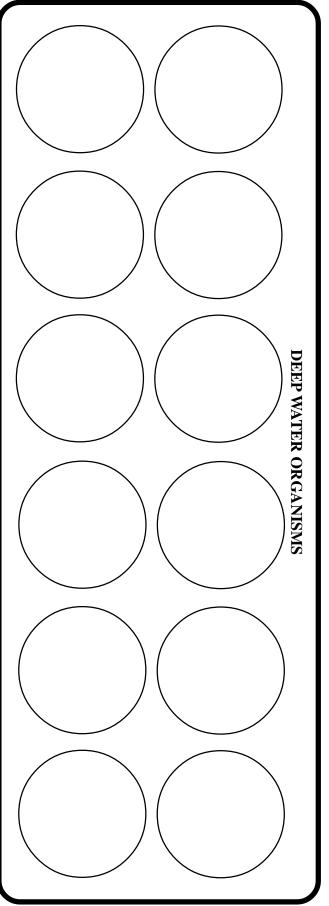


### Lesson nine continued

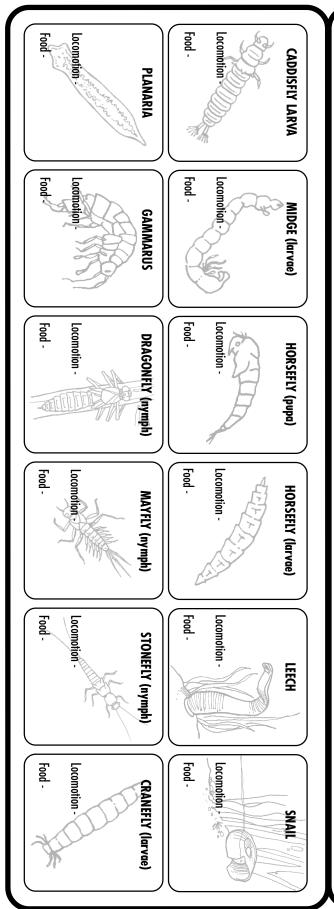
- 5. Discuss the value of wetlands with students. Ask the following questions:
  - What are all the organisms mentioned in the video? List them.
  - What actions can humans take to improve wetlands? A marsh clean up, a purple loosestrife dig or putting up nest boxes are things your class could do.
  - Do all organisms benefit from human intervention in the wetlands?
- 6. Encourage students to choose a strategy for protecting or restoring a wetland ecosystem. Once they have selected a strategy get them to prepare a presentation of the strategy using graphic, written, presentation or dramatic forms (see projects on page iii of the student journal). Be sure that students are aware that they need to address the wider effects of wetland destruction, protection, restoration and enhancement. Refer to the Ducks Unlimited Web site (www.ducks.ca) or call 1-800-665-DUCK to request additional information on wetland conservation, purple loosestrife and conservation farming practices like zero tillage and rotational grazing.

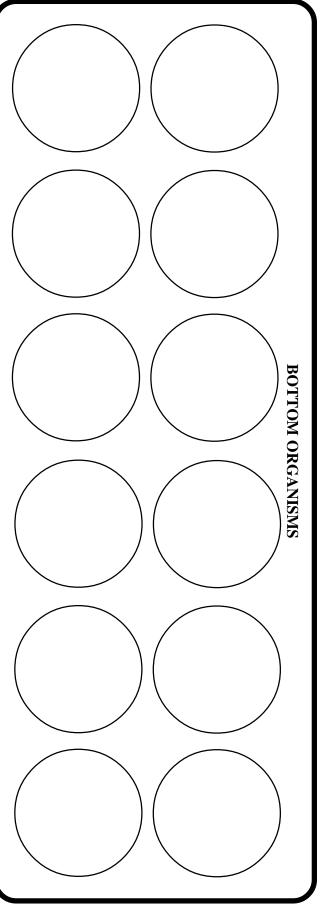





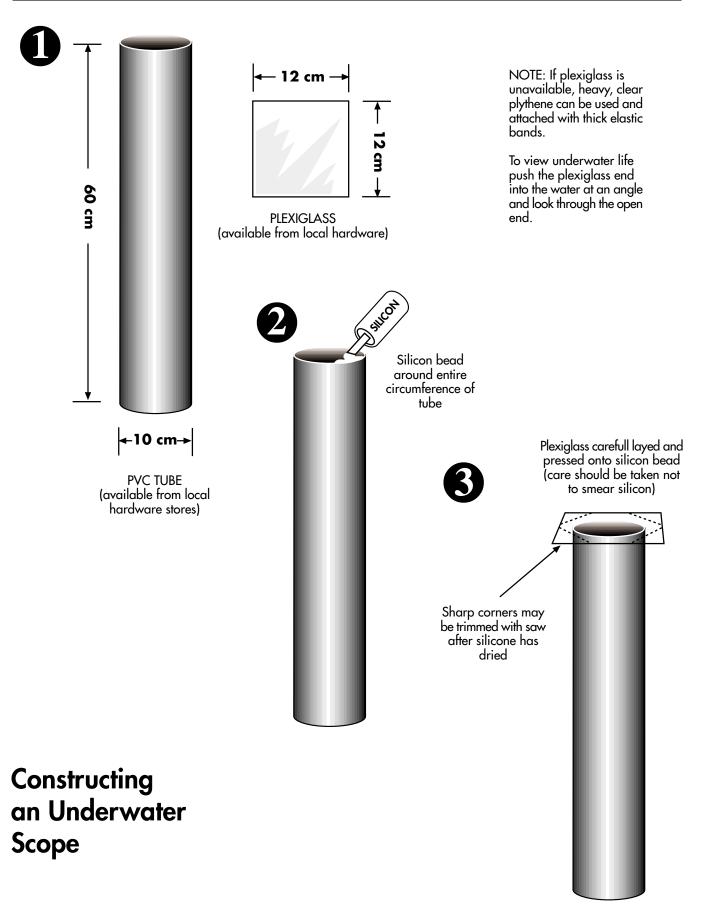

DIAGRAM 9.1

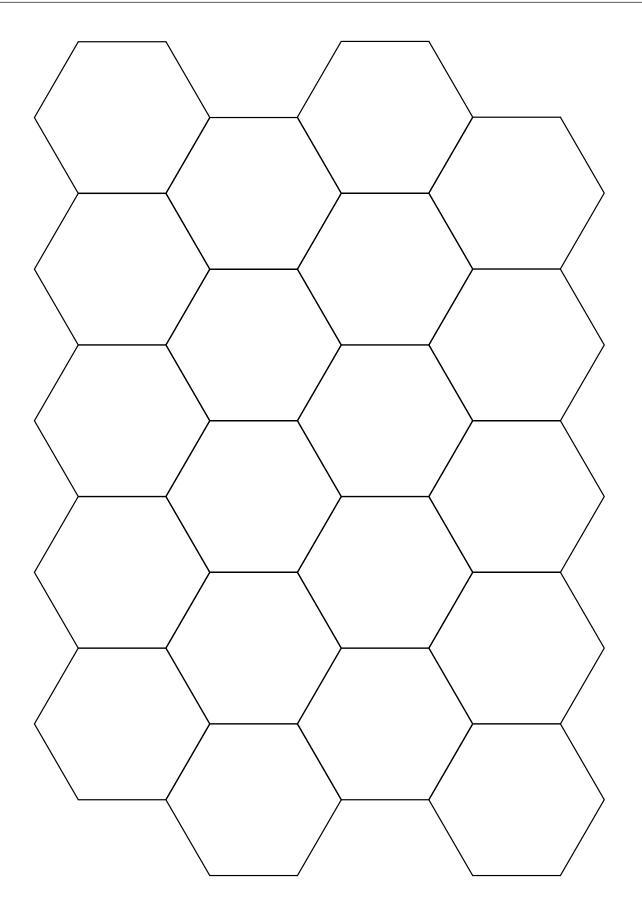




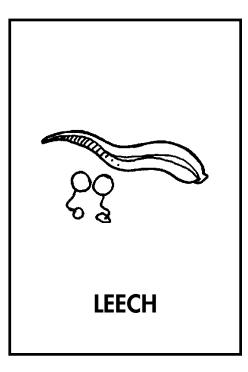


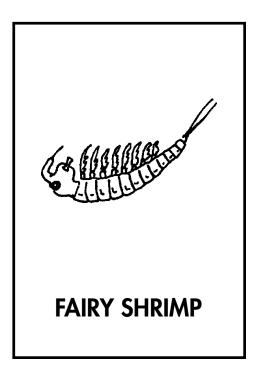







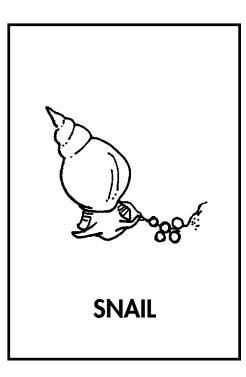



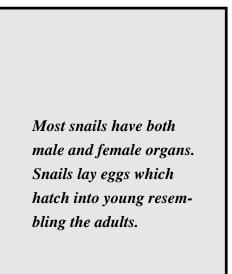



Card fronts

To create one complete deck of *Cycle of Life* cards, make two copies of the card fronts (pages 25 to 31). There are 26 card fronts – a complete deck contains 52 cards. Copy (or glue) the backs of the cards (page 32) onto the other side of the card fronts. Laminate the pages and cut out the cards.

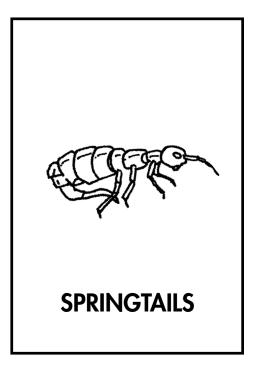




Leeches lay eggs in a cocoon which they fasten to a plant or bury in the mud. They hatch looking just like adults.

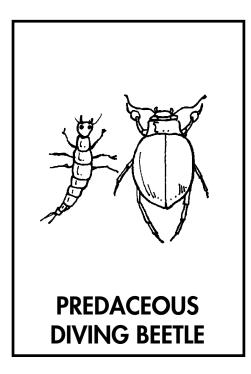


These tiny crustaceans lay eggs which are dropped to the bottom of the wetland by the adult. They hatch into an immature stage which must moult before becoming an adult.

# Card fronts

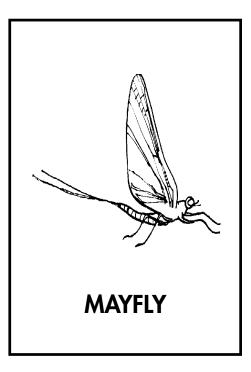




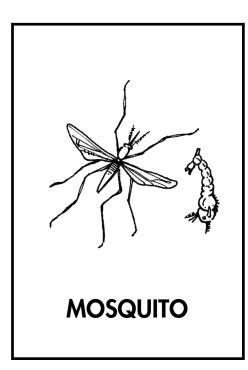




Females carry a number of eggs in their body. They hatch and remain there for several days before being released. These young must moult before becoming adults.

## Card fronts

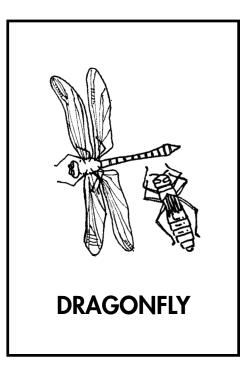



Eggs are laid in the vegetation along shore. The young are different from adults only in colour.




These common wetland insects have a complete metamorphosis, meaning they have a four stage life cycle. The eggs are laid on shoreline plants, hatching into aggressive aquatic larvae. The larvae eventually crawl to shore where they become pupas, hiding under logs or stones. They emerge weeks later as full grown adults.

## Card fronts

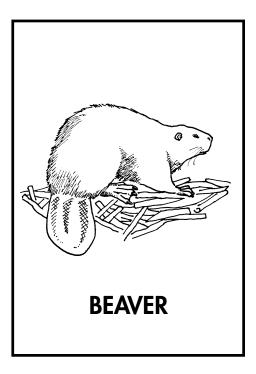



Mayflies show incomplete metamorphosis. They lay eggs in the water which hatch into nymphs. The nymphs live and feed in the water. After some time, the nymphs crawl up on shore where they moult, emerging as flying adults.

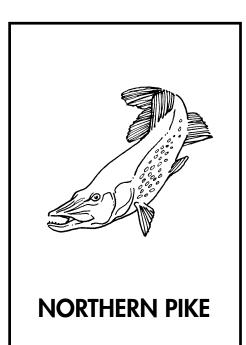


Like all true flies, mosquitoes have a four stage life cycle. Their metamorphosis is complete – from egg to larva to pupa to adult. This complete transformation may take place in as little as 10 days or as long as two years.

# Card fronts

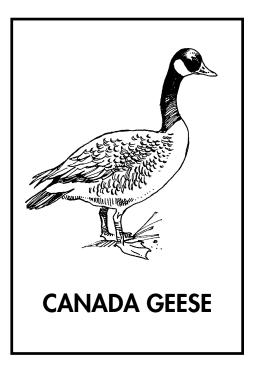



These large insects have a three stage life cycle much like that of the mayfly. The eggs are laid in water, where they hatch into nymphs. The nymphs eventually crawl up on shore where they moult into winged adults.




Frogs lay their eggs in jelly-like strings or masses in the water. The legless larvae which hatch have gills and are known as tadpoles. The development of legs and lungs takes several weeks, at which time they become adults and move out of the water.

# Card fronts

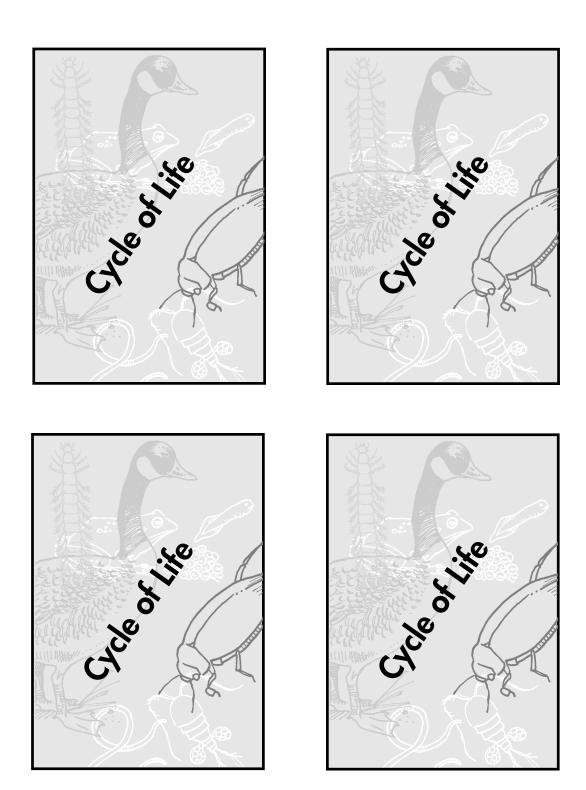



These Canadian symbols are born blind and helpless in the beaver lodge in late spring, but look very much like their parents. They grow slowly over the next two years. After their second winter they will find a mate, build their own lodge and have their own young.



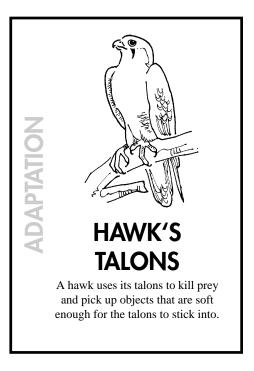
Like most freshwater fish, the female pike lays eggs which are then fertilized by the male. These eggs will hatch in a few weeks, with the young looking like the adult.

# Card fronts

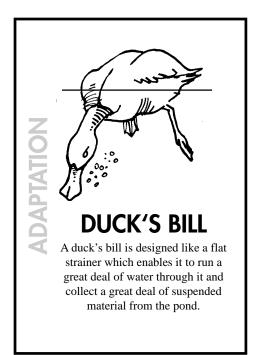


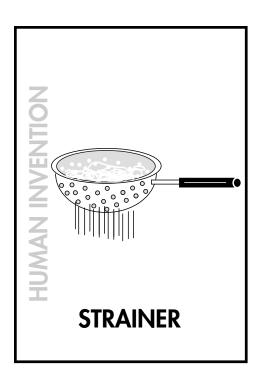

These large geese lay eggs which are incubated by the female for about four weeks before hatching. The young are unable to fly and spend the next couple of months growing a full set of feathers. By fall they are strong enough to fly south to their wintering grounds. Some females return the following spring as adults, ready to nest and lay eggs, though most don't lay eggs until their second year.

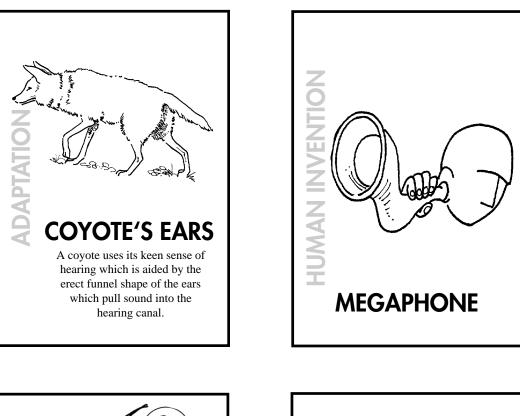
#### APPENDIX

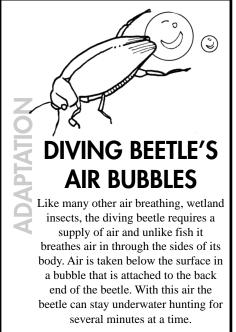

# Cycle of Life

# Card backs



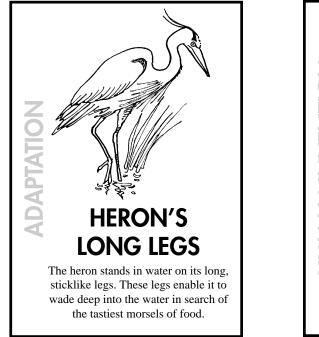


Card fronts


Rules for the *It's Just Like* game are outlined on page 16 of the student journal. Fold and glue the card on the right to the back of the card on the left. Laminate the pages and cut out the cards. Each card should have a human invention on one side and an animal or plant adaptation on the other.





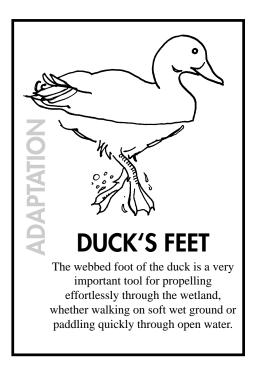


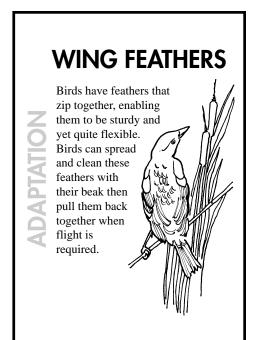




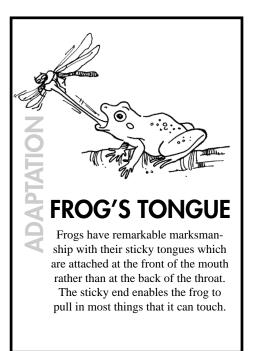


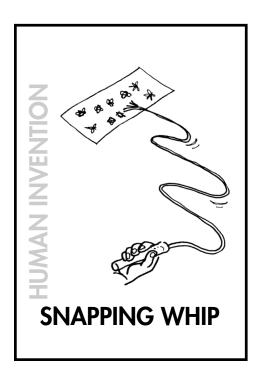



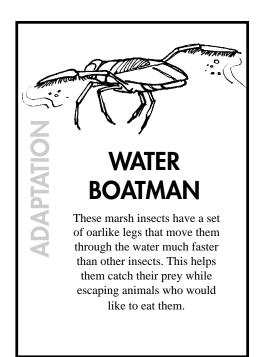


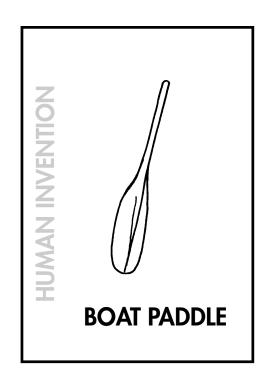





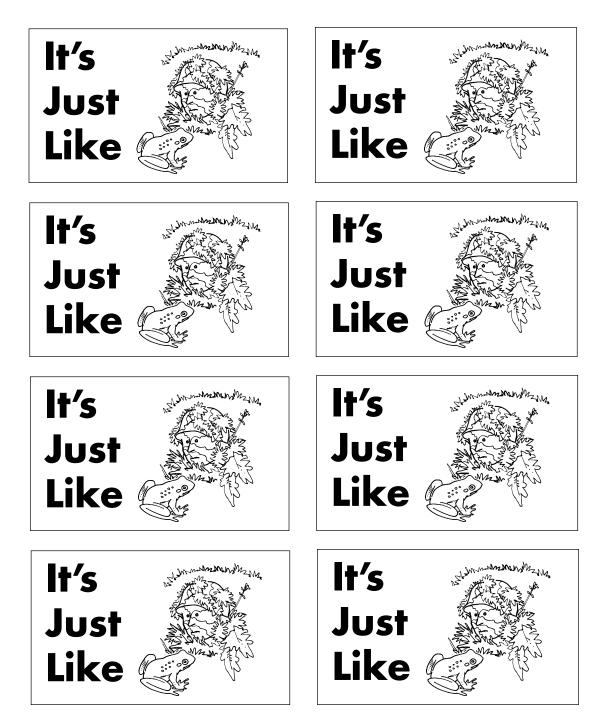



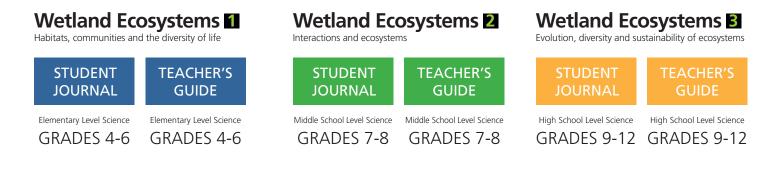










Tokens

Rules for the *It's Just Like* game are outlined on page 16 of the student journal. Tokens are awarded to players who correctly identify the plant or animal adaptation of the corresponding human invention. Make several copies of this page on coloured paper. Laminate and cut out the tokens.



Also available from Ducks Unlimited





Because many people are unaware of the tremendous value wetlands provide for our environment, economy and well being, these amazing places continue to be destroyed at an alarming rate. The goal of Project Webfoot is to reverse this trend by raising awareness and appreciation of wetlands among students, teachers, parents and communities.

Project Webfoot is an international, interdisciplinary education outreach program and curriculum created by Ducks Unlimited to bring wetland education to students of all ages. Your support of this program in your community will help create a public that is committed to wetland conservation now and in the future. To receive more information about Project Webfoot, contact Project Webfoot, c/o Ducks Unlimited Canada, P.O. Box 1160, Stonewall, Manitoba, ROC 2Z0.

> Ducks Unlimited Canada P.O. Box 1160, Stonewall, Manitoba ROC 2Z0 (204) 467-3000 www.ducks.ca